产品

去内毒素试剂

EndoGrade 无内毒素卵清蛋白

EndoGrade®卵清蛋白是一种无内毒素的卵清蛋白,品质卓越,保证内毒素水平(LPS)低于0.1 EU/mg。EndoGrade® 卵清蛋白由德国LIONEX GmbH公司生产。
品牌Lionex
货号LET0027/28/29
规格25mg/100mg/1000mg
货期3-8周
  • 描述

描述

EndoGrade® 卵清蛋白无内毒素卵清蛋白是从鸡蛋清中纯化的,保证内毒素水平 (LPS) 低于 0.1 EU/mg。

EndoGrade 无内毒素卵清蛋白

概括

卵清蛋白是动物模型中研究最广泛的蛋白质之一,也是气道高反应性(AHR)的成熟模型过敏原。卵清蛋白是一种糖蛋白,是鸡蛋清的主要成分。

市售卵清蛋白通常被内毒素(脂多糖/LPS)污染,在炎症第一步的体外实验中能够完全激活内皮细胞。LPS是一种强效且多效的炎症因子。因此,LPS污染会歪曲过敏学研究和免疫实验的研究结果。

为了满足体内 (例如注射、气雾化)和 体外(例如增殖试验)研究的要求  ,我们提供EndoGrade®卵清蛋白。EndoGrade®卵清蛋白是一种无内毒素的卵清蛋白,品质卓越,保证内毒素水平(LPS)低于0.1 EU/mg。EndoGrade® 卵清蛋白由德国LIONEX GmbH公司生产。

内毒素水平

< 0.1 欧盟/毫克

来源

鸡蛋清

纯度

> 98% 蛋白质 (SDS-Page)

分子量

~ 45 kDa

配方

冻干。不含盐。

空运

运输时环境温度为正常温度。收到产品后,请按照以下建议温度存放。

储存/到期

冻干的EndoGrade®卵清蛋白在2-8°C下可稳定保存至标示的有效期。复溶后的EndoGrade®卵清蛋白在-20°C下可稳定保存6个月。

用法

本产品 仅供实验室研究使用。不可用于诊断或治疗程序。本产品不得用作药品、兽药、农产品或食品添加剂。

其他名称

Plakalbumin、过敏原 Gal d 2、Gal d II

资源

EndoGrade® Ovalbumin has been widely referenced in scientific literature. Below you will find some of the published scientific papers that reference EndoGrade® Ovalbumin:

2022:

Koutník, Jiří et al. “T cell-intrinsic protein kinase D3 is dispensable for the cells’ activation.” Frontiers in Immunology vol. 13 1049033. 17 Nov. 2022, doi:10.3389/fimmu.2022.1049033

Raaijmakers, Tonke K et al. “NSAIDs affect dendritic cell cytokine production.” PloS one vol. 17,10 e0275906. 13 Oct. 2022, doi:10.1371/journal.pone.0275906

Tang, Xin-Zi et al. “Bronchus-associated macrophages efficiently capture and present soluble inhaled antigens and are capable of local Th2 cell activation.” eLife vol. 11 e63296. 29 Sep. 2022, doi:10.7554/eLife.63296

Gros, Marine et al. “Endocytic membrane repair by ESCRT-III controls antigen export to the cytosol during antigen cross-presentation.” Cell reports vol. 40,7 (2022): 111205. doi:10.1016/j.celrep.2022.111205

Martín-Otal, Celia et al. “Targeting the extra domain A of fibronectin for cancer therapy with CAR-T cells.” Journal for immunotherapy of cancer vol. 10,8 (2022): e004479. doi:10.1136/jitc-2021-004479

Balneger, N et al. “Sialic acid blockade in dendritic cells enhances CD8+ T cell responses by facilitating high-avidity interactions.” Cellular and molecular life sciences : CMLS vol. 79,2 98. 28 Jan. 2022, doi:10.1007/s00018-021-04027-x

2021:

Abusarah, Jamilah et al. “Engineering immunoproteasome-expressing mesenchymal stromal cells: A potent cellular vaccine for lymphoma and melanoma in mice.” Cell reports. Medicine vol. 2,12 100455. 21 Dec. 2021, doi:10.1016/j.xcrm.2021.100455

Stoff, Melanie et al. “C-type lectin receptor DCIR contributes to hippocampal injury in acute neurotropic virus infection.” Scientific reports vol. 11,1 23819. 10 Dec. 2021, doi:10.1038/s41598-021-03201-2

Weiden, Jorieke et al. “Robust Antigen-Specific T Cell Activation within Injectable 3D Synthetic Nanovaccine Depots.” ACS biomaterials science & engineering vol. 7,12 (2021): 5622-5632. doi:10.1021/acsbiomaterials.0c01648

Vollmann, Elisabeth H et al. “Specialized transendothelial dendritic cells mediate thymic T-cell selection against blood-borne macromolecules.” Nature communications vol. 12,1 6230. 28 Oct. 2021, doi:10.1038/s41467-021-26446-x

Caudill, Cassie et al. “Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity.” Proceedings of the National Academy of Sciences of the United States of America vol. 118,39 (2021): e2102595118. doi:10.1073/pnas.2102595118

Pavasutthipaisit, Suvarin et al. “CARD9 Deficiency Increases Hippocampal Injury Following Acute Neurotropic Picornavirus Infection but Does Not Affect Pathogen Elimination.” International journal of molecular sciences vol. 22,13 6982. 29 Jun. 2021, doi:10.3390/ijms22136982

Thomann, Anna Sophie et al. “Conversion of Anergic T Cells Into Foxp3- IL-10+ Regulatory T Cells by a Second Antigen Stimulus In Vivo.” Frontiers in immunology vol. 12 704578. 25 Jun. 2021, doi:10.3389/fimmu.2021.704578

Clemen, Ramona et al. “Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice.” Advanced science (Weinheim, Baden-Wurttemberg, Germany) vol. 8,10 2003395. 8 Mar. 2021, doi:10.1002/advs.202003395

Tadayon, Sina et al. “Lymphatic Endothelial Cell Activation and Dendritic Cell Transmigration Is Modified by Genetic Deletion of Clever-1.” Frontiers in immunology vol. 12 602122. 4 Mar. 2021, doi:10.3389/fimmu.2021.602122

Prado Acosta, Mariano et al. “S-Layer From Lactobacillus brevis Modulates Antigen-Presenting Cell Functions via the Mincle-Syk-Card9 Axis.” Frontiers in immunology vol. 12 602067. 1 Mar. 2021, doi:10.3389/fimmu.2021.602067

Lirussi, Darío et al. “Cyclic Di-Adenosine Monophosphate: A Promising Adjuvant Candidate for the Development of Neonatal Vaccines.” Pharmaceutics vol. 13,2 188. 1 Feb. 2021, doi:10.3390/pharmaceutics13020188

2020:

Silva, Leyre et al. “Cold-Inducible RNA Binding Protein as a Vaccination Platform to Enhance Immunotherapeutic Responses Against Hepatocellular Carcinoma.” Cancers vol. 12,11 3397. 16 Nov. 2020, doi:10.3390/cancers12113397

Xu, Dan Dan et al. “Akt+ IKKα/β+ Rab5+ Signalosome Mediate the Endosomal Recruitment of Sec61 and Contribute to Cross-Presentation in Bone Marrow Precursor Cells.” Vaccines vol. 8,3 539. 17 Sep. 2020, doi:10.3390/vaccines8030539

Kim, Eui Ho et al. “Squalene emulsion-based vaccine adjuvants stimulate CD8 T cell, but not antibody responses, through a RIPK3-dependent pathway.” eLife vol. 9 e52687. 9 Jun. 2020, doi:10.7554/eLife.52687

Raaijmakers, Tonke K et al. “Tumor ablation plus co-administration of CpG and saponin adjuvants affects IL-1 production and multifunctional T cell numbers in tumor draining lymph nodes.” Journal for immunotherapy of cancer vol. 8,1 (2020): e000649. doi:10.1136/jitc-2020-000649

Abdissa, Ketema et al. “Relevance of inducible nitric oxide synthase for immune control of Mycobacterium avium subspecies paratuberculosis infection in mice.” Virulence vol. 11,1 (2020): 465-481. doi:10.1080/21505594.2020.1763055

Baumann, Daniel et al. “Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy.” Nature communications vol. 11,1 2176. 1 May. 2020, doi:10.1038/s41467-020-15979-2

Miura, Risako et al. “Synergistic anti-tumor efficacy by combination therapy of a self-assembled nanogel vaccine with an immune checkpoint anti-PD-1 antibody.” RSC advances vol. 10,14 8074-8079. 25 Feb. 2020, doi:10.1039/c9ra10066k

Schmitz, Katja et al. “Progranulin deficiency confers resistance to autoimmune encephalomyelitis in mice.” Cellular & molecular immunology vol. 17,10 (2020): 1077-1091. doi:10.1038/s41423-019-0274-5

2019:

Raulf, Marie-Kristin et al. “The C-type Lectin Receptor CLEC12A Recognizes Plasmodial Hemozoin and Contributes to Cerebral Malaria Development.” Cell reports vol. 28,1 (2019): 30-38.e5. doi:10.1016/j.celrep.2019.06.015

Hyde, Evelyn J et al. “Similar immune mechanisms control experimental airway eosinophilia elicited by different allergens and treatment protocols.” BMC immunology vol. 20,1 18. 4 Jun. 2019, doi:10.1186/s12865-019-0295-y

Castro-Dopico, Tomas et al. “Anti-commensal IgG Drives Intestinal Inflammation and Type 17 Immunity in Ulcerative Colitis.” Immunity vol. 50,4 (2019): 1099-1114.e10. doi:10.1016/j.immuni.2019.02.006

Wculek, Stefanie K et al. “Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen.” Journal for immunotherapy of cancer vol. 7,1 100. 8 Apr. 2019, doi:10.1186/s40425-019-0565-5